
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Application of String Matching and String Similarity

for Shape Side Matching

Raden Francisco Trianto Bratadiningrat - 13522091

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

franciscotrianto@gmail.com:

Abstract— String matching is a crucial technique in computer

science used extensively to compare and find relationships

between strings. This paper presents a novel application of

string-matching algorithms for the problem of shape-side

matching, where altered-sided shapes are compared based on

their side profiles to determine connectivity. The methodology

involves converting side profiles into arrays of distances and

subsequently into ASCII strings. Exact string matching

algorithms, specifically Knuth Morris Pratt (KMP) and Boyer

Moore (BM), are employed for efficient and accurate matching,

while the Levenshtein Distance is utilized for approximate

matching when exact matches are not feasible. Experimental

results demonstrate the effectiveness of these approaches in

accurately matching the sides of altered-sided shapes. This work

not only solves the specific problem of shape-side matching but

also establishes a foundation for further exploration in

comprehensive shape matching.

Keywords—Shape Side Matching, String Matching, String

Similarity, Design Algorithm

I. INTRODUCTION

Shape matching stands as a cornerstone in contemporary
computer science, permeating various applications across
diverse domains. Particularly pivotal in computer vision, this
discipline facilitates object identification and classification
within images and videos, underpinning crucial tasks like
object recognition and scene understanding. However,
conventional methods of shape matching, often reliant on
geometric properties and transformations, confront challenges
posed by real-world data variability, including changes in
orientation, scale, and partial occlusions. In response, this
paper proposes a pioneering approach integrating string
matching and string similarity algorithms to address these
complexities effectively.

Traditional shape-matching techniques, while proficient,
can be computationally demanding and sensitive to data
variations. This paper seeks to surmount these challenges by
harnessing the power of string-matching algorithms like
Knuth-Morris-Pratt (KMP) and Boyer-Moore (BM), renowned
for their efficacy in text-processing tasks. By incorporating
these algorithms, alongside the Levenshtein Distance metric for
approximate matching, the proposed methodology aims to offer
a robust solution for efficiently and accurately matching the
side profiles of altered-sided shapes. This innovative approach

not only resolves the specific problem of shape-side matching
but also lays a solid foundation for further exploration in
comprehensive shape matching.

Fig. 1. Shape Side Matching

(source: writer archive)

II. STRING MATCHING

String matching is the process of comparing two different
strings to find essential information about the relation between
the two strings. It is one of the most used concepts in Computer
Science because of just how much information is in a string.

String matching problem itself usually involves two elements

[1]:

1. T: text, a long string with the length of n character

2. P: pattern, a string with the length of m character

(assuming m <<< n), will be searched inside the text

There are two types of string matching: Exact String
Matching Algorithms and Approximate String Matching
Algorithms.

A. Exact String Matching

Exact String Matching Algorithms are algorithms used to
find a perfect match of a pattern in a large string, usually a text

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

or sequence. Perfect match means that inside the text or
sequence exists a pattern with every letter and order the same.
Exact String Matching finds one or several instances of the
pattern inside the text.

There are many string-matching algorithms. Some
examples are Knuth Morris Pratt algorithm, Boyer Moore
Algorithm, Rabin Karp Algorithm, Aho-Corasick Algorithm,
and many more. But this paper will only use the Knuth Morris
Pratt and Boyer Moore Algorithm, which are some of the most
popular string matching algorithms.

1) Brute Force Algorithm

String matching using the Brute-Force Algorithm

is straightforward but inefficient. It checks each position in

the text T to see if the pattern P starts in that position,

comparing each letter and shifting one position to the right

if it fails. The shift makes the algorithm do a lot of

wasteful comparisons, making it very inefficient. In the

worst case, the amount of character comparison needed is

m(n-m+1) = O (m n).

Fig. 2 Example of Brute-Force Algorithm

(source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Pencocokan-string-2021.pdf)

2) Knuth Morris Pratt (KMP) Algorithm

KMP is a string-matching algorithm that looks for

the pattern in the text in a left-to-right order. KMP is

different from Brute Force string matching in terms of

shifting. KMP uses a more intelligent shift. It tries to shift

the pattern as much as possible to avoid wasteful

comparison yet still correctly checks the whole text. To do

this KMP uses a Border Function to calculate the best

amount of shift.

The border Function preprocesses the pattern to find

the matches of the prefix of the pattern with the pattern

itself. Border Function b(k) is defined as the size of the

largest prefix of pattern P [0...k], which is also a suffix of

P [1...K].

Fig. 3. Example of Border Function

(source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Pencocokan-string-2021.pdf)

The time complexity for KMP is O (m + n), which is

significantly faster than the Brute Force algorithm O (m n).

However, KMP does not work so well when the size of the

alphabet increases, causing more chance of mismatch.

Fig. 4. Example of KMP Algorithm

(source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Pencocokan-string-2021.pdf)

3) Boyer Moore (BM) Algorithm

Boyer Moore Algorithm or BM is a string-matching

algorithm based on two techniques: The looking-glass

technique and the character-jump technique. The looking-

glass technique finds the pattern P in text T by comparing

P backward, starting from the end until the start of P. The

character-jump technique is one of the ways to shift

intelligently.

There are three cases of character jump-checked in order

[1]:

1. If P contains x somewhere, try to shift P to the

right until the last occurrence of x aligns with

T[i].

2. If P contains x somewhere, but a shift to the right

to the last occurrence is impossible, then shift P

right by one character to T[i+1].

3. Lastly, if cases 1 and 2 do not apply, then shift

P[0] with T[i+1]

Like KMP, BM preprocesses the pattern P and the

alphabet A to build a function called the last occurrence

function L(). The last occurrence function, L(x) and x is a

letter in A, is defined as the largest index i such that P [i]

== x, or -1 if no such index exists. The last occurrence

function maps all the letters in A to an integer used for

shifting.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 5. Example of Last Occurrence Function

(source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Pencocokan-string-2021.pdf)

In the worst cases, Boyer Moore (BM) has a time

complexity of O (nm + A). In retrospect, BM is fast when

the alphabet A is large but slow when the alphabet is

small. Still, BM is significantly faster than brute-force

string matching.

 Fig. 6. Example of Boyer Moore Algorithm

(source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-

2021/Pencocokan-string-2021.pdf)

B. Approximate String Matching

Approximate String Matching Algorithms are algorithms
used to search the substring of the input string. Suppose given
two strings, text T [1…n] and pattern P [1…m]. The task is to
find all the occurrences of patterns in the text whose edited
distance to the pattern is at most k [2]. A few examples are the
Levenshtein Distance, the Hamming Distance, the Bitmap
Algorithm, and many others. In this paper, we will only use
Levenshtein Distance.

1) Levenshtein Distance

Levenshtein Distance is the smallest number of

insertions, deletions, and substitutions required to change

one string into another [3]. Insertion is the operation to add

a character to string A. Deletion is the operation to remove

a character from string A. Substitutions is the operation to

replace a character from string A with another character.

Fig. 7. Example of Levenshtein Distance for string “cat” and “crown”

(source: writer archive)

By using the Levenshtein Distance using iterative

with the two-matrix approach, the time complexity needed

to find the Levenshtein Distance is O (m*n).

III. STRING SIMILARITY

String similarity is a way to find the similarity value
between two different strings. There are many ways to find the
similarity value, but for this paper, we will use the Levenshtein
Distance to calculate the approximate similarity score of two
different strings.

From section II: String Matching, we see that using
Levenstein Distance, we can get the smallest number of
operations needed to change one string to the other string.

We can calculate the similarity between two strings of the
Levenshtein Distance by using the formula below:

similarity = {1 – (Levenshtein distance / max length)} x 100

IV. SHAPE SIDE MATCHING

Shape matching is the process of comparing geometric
shapes to find similarities or differences between them. It is a
critical aspect in various fields such as computer vision,
pattern recognition, medical imaging, and robotics. Shape
matching techniques aim to determine how well two shapes
correspond to each other, which can involve identifying exact
matches, approximate matches, or partial matches.

 In this paper, we will only dive into shape-side matching.
Shape-side matching is the process of comparing shapes that
originate from a sided shape called an altered-sided shape. For
example, a rectangular that is altered on its sides but still has
the side profile intact.

Fig. 8. Example of altered-sided shapes

(source: writer archive)

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 From Fig. 8. You can see that although not clear, all the
shapes still have their side profile, but their side profile is now
not just a simple straight line, but a pattern instead.

Fig. 9. Side profile of altered-sided shape

(source: writer archive)

 From Fig. 9. You can see that the altered-sided shapes still
contain their side profiles. An altered-sided shape must follow
the following rules:

- A shape is an altered-sided shape if it still contains the
original shape side profile.

- A shape contains the original shape side profile if all
the original shape's corner point still exists at the same
position on the altered-sided shape.

- An altered-sided shape must not have a side pattern
where the pattern has two different pixels at the same
position depending on the side orientation (for
example, column or row).

Fig. 10. Side profile of altered-sided shape.

(a) Top left shape (b) top right shape

(c) bottom left shape (d) bottom right shape

(source: writer archive)

 From Fig. 10, we see that (a) and (b) are altered-sided
shapes, but (c) and (d) fail the rules set. (c) fails because the
original shape side profile is not maintained, while (d) fails
because the right side has a pattern where there are sections
with two pixels of the pattern at the same height.

 Shape-side matching involves two altered-sided shapes
where one altered-sided shape will be connected to the other on
one of the sides. In this paper, we will investigate how we can
connect two altered-sided shapes on one of its sides using
string matching as the base theory.

V. METHODOLOGY

 Given an altered-sided shape A, find another altered-sided
shape B, such that A and B can be connected at side SA for
shape A and side SB for B, using String Matching. For
simplicity, we will only be using an altered-sided shape that
originates from a rectangle and has four sides (left, right, top,
and bottom).

Fig. 11. Example of Shape Side Matching

(source: writer archive)

 To use String Matching, we first need to find a way to
represent a side pattern in the form of a string. For our
approach, we will use the distance from the edge of the shape
to the first occurrence of a pixel in the pattern. For example,
assuming the shapes are in .jpg image format, to calculate the
distance of the pixel of the left side of a 4-sided shape, we will
check each pixel from the left side of the shape to the first pixel
that is not empty.

Fig. 12. Calculating the distance of each pixel from the edge

(source: writer archive)

 The result of calculating the distance is an array of integers.
For the example of Fig 12, the distance will be in the form of
an array with height amount of length.

Table 1. Converting a shape pattern into an array of distances

Shape
A Sample of Array filled

with Distance

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

0, 0, 1, 2, 3, 3, 4, 5, 5, 6, 7, 8,
8, 9, 10, 10, 11, 12, 13, 13,
14, 15, 15, 16, 17, 18, 18, 19,
20, 20, 21, 22, 23, 23, 24, 25,
25, 26, 27, 28, 28, 29, 30, 30,
31, 32, 33, 33, 34, 35, 35, 36,
37, 38, 38, 39, 40, 41, 41, 42,
43, 43, 44, 45, 46, 46, 47, 48,
48, 49, 50, 51, 51, 52, 53, 53,
54, 55, 56, 56, 57, 58, 58, 59,
60, 61, 61, 62, 63, 63, 64, 65

We need to make sure all the patterns are one uniform pattern
where every array starts from the top or left side of the pattern.
We also want to check that the array only stores the flattened
pattern. This check will make the stored information all-
important to identify a pattern.

 Using this array of integers, we can convert it into 8-bit
ASCII. But, because 8-bit ASCII can only convert integers
from 0 to 255, we need to add a limitation on how big the
pattern can be. The maximum distance of the pattern must be
below 256. In cases where the maximum distance exceeds the
limit, we can manage it by first removing the pattern from the
start until the pattern is valid. Secondly, we remove all the
patterns after the valid pattern where the pattern is no longer
valid. Though this is just one way of solving it, the
consequence is that information about the pattern may be lost.
The maximum distance is shown in Fig. 12.

Fig. 13. Information lost from ASCII limitation

(source: writer archive)

 From Fig 13 you can see that the bottom part of the
pattern is lost due to the maximum distance being above the
limit of ASCII characters. By assuming the max distance is
below 256, we can be sure that no information about the
pattern is lost. With that assumption, we can then convert the
array of distances into an ASCII string.

Table 2. Converting a shape into an ASCII string

Shape A Sample of ASCII string

♫☼☼►◄↕↕‼¶¶§▬↨↨↑↓↓→∟
∟↔▲▲▼0123345567889::;<
==>??@ABBCDDEFGGHIIJK
LLMNNOPQQRSSTUVVWX
XYZ[[\]]^_``abbcdeefghhijjklm
mnoopqrrsttuvwwxyyz{||}~~⌂

Now that we can convert all sides of every shape into a
string of ASCII characters, we can use string matching and
similarity to solve the problem. The resulting string from shape
A and side SA, as well as shape B and side SB, is not yet ready
to be used for string matching. As defined in section II, pattern
P has a length of m and text T has a length of n where m is
much smaller than n (m <<< n). Since the pattern converted is
the whole image, it means that m and n if using the original
ASCII string, could be around the same size, not fulfilling m
<< n.

 To do string matching, instead of samples of the pattern to
be used as the pattern P for string matching. We can do this by
simply taking some amount of sample with a certain size. The
more the sample used, the more accurate the result. The same
with the amount of character used as the pattern also matters
for the accuracy of the result. In this paper, we will choose 16
samples or patterns with each sample containing 5 characters.
Those amounts are the result of experiments we have
conducted.

 Using the 16 patterns, we can use the KMP or BM
algorithm to compare all the shapes in the dataset, trying to
find the best matching shape. The amount of successful KMP
or BM string matching is counted for each side of a shape. We
keep track of the shape B and side SB that have the greatest
number of successful patterns. We can set a threshold for the
number of successful patterns so it must be above 6 counts to
check if it is truly the best matched. Through experiment, 6 is
the best threshold to validate if KMP or BM is successful in
finding the best match.

Table 3. Shape Matching using KMP and BM

Shape A side right Result: Shape B side left

Total successful KMP: 7

Total successful BM: 7

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

From Table 3 we can see that both KMP and BM
successfully string match 7 patterns out of the total 16 patterns.
Since the limit is 6, we can say that both KMP and BM
successfully found the best match.

 If the string matching fails to find an exact match or a
match that is accurate enough, then we can use String
Similarity to find the closest match. We will be using
Levenshtein Distance to calculate the similarity between two
strings originating from shape A side SA and shape B side SB
without needing to extract 16 small patterns created for the
string matching. Using Levenshtein Distance, we can find the
best shape with the highest amount of similarity value using the
formula provided in section III.

Table 4. Shape Matching using Levenshtein Distance Similarity

Shape A side right Result: Shape B side left

Similarity Score: 0.534

 By combining both string matching and similarity, using
this methodology, we should be able to solve shape-side
matching. Note that our approach has many limitations like the
limit of 8-bit ASCII characters. Even then we are still able to
shape side matches according using string-matching.

VI. TESTING

 To assess our theory of solving shape-side matching
using string matching and similarity, we implement a program
that uses the same methodology to solve the problem. See
Appendix A for the source code and documentation.

Table. Testing using the writer’s implementation.

No Input KMP algorithm BM algorithm

1.

2.

3.

4.

5.

 From Table 5 we see that our implementation successfully
shows that our methodology is correct. We can use string
matching and similarity for shape-side matching. Although the
writer’s implementation only handles altered-sided shapes that
originated from a rectangular, we see that our approach is
indeed one of the ways to solve shape-side matching.

VII. CONCLUSION

 In this paper, we successfully demonstrated the application
of string-matching techniques to the problem of shape-side
matching. By representing the side profiles of altered-sided
shapes as strings, we were able to leverage both exact and
approximate string-matching algorithms to identify matching
sides. The use of Knuth Morris Pratt (KMP) and Boyer Moore
(BM) algorithms provided efficient and accurate results for
exact matches, while the Levenshtein Distance offered a robust
method for finding approximate matches when exact matching
was not feasible.

 Our methodology included converting side profiles into
arrays of distances and then into ASCII strings, ensuring
uniformity and maximizing the utility of string-matching
algorithms. Through experiments, we validated that this
approach could successfully match sides of altered-sided
shapes, with both KMP and BM algorithms identifying the
correct matches when given appropriate patterns.

 The success of this approach opens further opportunities to
extend the methodology to solve the entire shape-matching
problem. By applying string-matching techniques to all sides of
a shape and exploring more advanced or alternative encoding
methods, we can enhance the accuracy and efficiency of
matching complex shapes. This lays the groundwork for future
research and practical applications in fields such as computer
vision, pattern recognition, and robotics.

 In conclusion, the integration of string-matching algorithms
into shape-side matching has proven effective and promising.
This research not only addresses the specific problem of side
matching but also provides a solid foundation for tackling the
broader challenge of comprehensive shape matching.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

APPENDIX

Appendixes A: documentation of the writer’s
implementation of Shape Side Matching for rectangular shape
origin.

ACKNOWLEDGMENT

The writer would like to thank all IF2211 lecturers,
especially Dr. Ir. Rinaldi Munir, M.T. as the lecturer in our
class K01 of IF2211 for “Strategi Algoritma” or Algorithm
Design Strategies, for teaching and supporting all the students
in creating these papers to contribute to the field of Computer
Science. I have gained a much better understanding of string
matching and string similarities and their application to Shape
Matching. I also would like to thank Dr. Ir. Rinaldi, M.T., for
providing students with plentiful resources on Algorithm
Design Strategies on his website.

REFERENCES

[1] Geeksforgeeks, Applications of String Matching Algorithms. Retrieved
June 11, 2024, from https://www.geeksforgeeks.org/applications-of-
string-matching-algorithms.

[2] Munir. Rinaldi, “Pencocokan String (String/Pattern Matching),” IF2211
Strategi Algoritma. Bandung, West Java, 2021. Retrieved June 11, 2024,
from https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Pencocokan-string-2021.pdf.

[3] Algorithms and Theory of Computation Handbook, CRC Press LLC,
1999, "Levenshtein distance", in Dictionary of Algorithms and Data
Structures [online], Paul E. Black, ed. 15 May 2019. Retrieved June 11,
2024, from: https://www.nist.gov/dads/HTML/Levenshtein.html.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Raden Francisco Trianto Bratadiningrat dan 13522091

https://www.geeksforgeeks.org/applications-of-string-matching-algorithms
https://www.geeksforgeeks.org/applications-of-string-matching-algorithms
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Pencocokan-string-2021.pdf
https://www.nist.gov/dads/
https://www.nist.gov/dads/
https://www.nist.gov/dads/HTML/Levenshtein.html

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

APPENDIX A

You can find the writer’s implementation and

documentation below.

https://github.com/NoHaitch/Shape-Side-Matching-for-

rectangular-shape-origin

Using KMP search

Using BM Search

https://github.com/NoHaitch/Shape-Side-Matching-for-rectangular-shape-origin
https://github.com/NoHaitch/Shape-Side-Matching-for-rectangular-shape-origin

